Improving Statistical Machine Translation with Processing Shallow Parsing

نویسندگان

  • Hoai-Thu Vuong
  • Vinh Van Nguyen
  • Viet-Hong Tran
  • Akira Shimazu
چکیده

Reordering is of essential importance for phrase based statistical machine translation (SMT). In this paper, we would like to present a new method of reordering in phrase based SMT. We inspired from (Xia and McCord, 2004) using preprocessing reordering approaches. We used shallow parsing and transformation rules to reorder the source sentence. The experiment results from English-Vietnamese pair showed that our approach achieves significant improvements over MOSES which is the state-of-the art phrase based system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Bilingually-Constrained Recursive Neural Networks with Syntactic Constraints for Hierarchical Translation Model

Hierarchical phrase-based translation models have advanced statistical machine translation (SMT). Because such models can improve leveraging of syntactic information, two types of methods (leveraging source parsing and leveraging shallow parsing) are applied to introduce syntactic constraints into translation models. In this paper, we propose a bilingually-constrained recursive neural network (...

متن کامل

Reordering Models for Statistical Machine Translation: A Literature Survey

In this survey, we briefly study various reordering models that are used with statistical translation models. Reordering model is one of the important component of any statistical machine translation system. Problem of reordering is NP-Hard itself. In this survey, we study various reordering approaches that can be used to solve this problem. We first study simple distortion-based reordering whi...

متن کامل

Statistical Machine Translation Using Coercive Two-Level Syntactic Transduction

We define, implement and evaluate a novel model for statistical machine translation, which is based on shallow syntactic analysis (part-of-speech tagging and phrase chunking) in both the source and target languages. It is able to model long-distance constituent motion and other syntactic phenomena without requiring a full parse in either language. We also examine aspects of lexical transfer, su...

متن کامل

A Hybrid Machine Translation System for Typologically Related Languages

This paper describes a shallow parsing formalism aiming at machine translation between closely related languages. The formalism allows to write grammar rules helping to (partially) disambiguate chunks in input sentences. The chunks are then translatred into the target language without any deep syntactic or semantic processing. A stochastic ranker then selects the best translation according to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012